Mapping Duct Layouts for Cleaner Airflow in Mobile Homes

Mapping Duct Layouts for Cleaner Airflow in Mobile Homes

Importance of Efficient Duct Layouts for Airflow

The importance of efficient duct layouts for airflow in mobile homes cannot be overstated. Mobile homes, often compact and with limited space, pose unique challenges when it comes to ensuring clean and effective air circulation. Proper duct layout is critical not only for maintaining comfortable indoor temperatures but also for promoting healthy air quality.


Efficient duct design begins with understanding the specific needs of a mobile home. Unlike traditional houses, these structures require a more strategic approach due to their smaller size and often unconventional shapes. The goal is to ensure that air flows smoothly throughout the entire space, reaching every corner without obstruction or loss of efficiency.


One of the primary benefits of an optimal duct layout is energy efficiency. Thermostat settings should be adjusted to match seasonal needs in mobile homes hvac for mobile home temperature. When ducts are poorly designed, they can lead to significant energy wastage as heating or cooling systems work harder to maintain desired temperatures. This not only increases utility bills but also places unnecessary strain on HVAC systems, potentially shortening their lifespan. A well-planned duct system minimizes these issues by reducing resistance and allowing air to travel more freely from the central unit to each room.


Furthermore, good ductwork directly impacts indoor air quality-a crucial aspect for any living environment but especially vital in mobile homes where inhabitants may be more susceptible to pollutants due to close quarters. Efficiently routed ducts reduce the risk of airborne contaminants such as dust, allergens, and mold spores circulating within the home. By avoiding sharp bends and using high-quality materials with sealed joints, the system prevents leaks that could introduce unwanted particles into the airflow.


Additionally, an efficient layout considers the placement of vents and returns strategically throughout the home. This ensures balanced distribution and prevents areas from becoming too hot or cold compared to others. It also helps avoid stale or stagnant air pockets where pollutants might accumulate over time.


In conclusion, mapping out an effective duct layout in mobile homes is essential for achieving cleaner airflow and enhancing overall living conditions. It requires thoughtful planning and execution but pays off through improved energy efficiency, better indoor air quality, and greater comfort for residents. As more people opt for mobile living solutions due to affordability and flexibility, prioritizing optimal duct design becomes increasingly important in creating healthy environments that foster well-being.

Mobile homes, with their compact and efficient designs, offer a unique living experience, but they also present distinct challenges when it comes to ventilation. Proper airflow is crucial for maintaining indoor air quality and ensuring a healthy living environment. One of the most significant hurdles in achieving optimal ventilation in mobile homes is mapping duct layouts effectively to promote cleaner airflow.


Unlike traditional homes, mobile homes often have limited space to accommodate extensive ductwork. This constraint can lead to inefficient air distribution, resulting in some areas receiving inadequate ventilation while others may become over-ventilated. Such imbalances can exacerbate issues like moisture buildup, mold growth, and uneven heating or cooling-all of which impact both comfort and health.


Mapping duct layouts in mobile homes requires a strategic approach that balances spatial limitations with the need for effective air circulation. One common challenge is the integration of HVAC systems within the confined spaces typically found under floors or behind walls. These systems need to be carefully planned to ensure that each room receives adequate airflow without sacrificing efficiency.


A well-designed duct layout should consider the specific needs of each area within the home. For instance, kitchens and bathrooms generate more humidity and require enhanced ventilation compared to living rooms or bedrooms. Tailoring duct placement and sizing accordingly can help mitigate issues such as excess moisture that could lead to structural damage or health concerns like respiratory problems.


Another challenge lies in dealing with older mobile homes that might not have been originally designed with modern ventilation standards in mind. Retrofitting these structures with updated ductwork can be complicated by existing frameworks and materials that may not easily accommodate new installations. In such cases, creative solutions-such as using flexible ducts or incorporating advanced filtration technologies-might be necessary to enhance air quality without extensive structural modifications.


Moreover, mobile home owners must contend with potential leaks or blockages within their duct systems. Regular maintenance checks are essential for identifying any weak points where conditioned air might escape or where debris could accumulate, obstructing proper airflow. Ensuring airtight connections between ducts and vents can prevent energy loss and maintain consistent temperature control throughout the home.


In conclusion, mapping duct layouts for cleaner airflow in mobile homes involves overcoming several common challenges related to space constraints, system integration, retrofitting older models, and ongoing maintenance needs. By addressing these issues thoughtfully and proactively, homeowners can achieve improved indoor air quality and comfort levels-ultimately enhancing their overall living experience within these unique residential environments.

More About Us

What Yelp Says About Us

How to reach us


Addressing Seasonal Allergen Challenges in Mobile Home Air Management

Addressing Seasonal Allergen Challenges in Mobile Home Air Management

Innovative Solutions and Technologies in Allergen Management for Mobile Living Spaces: Addressing Seasonal Allergen Challenges in Mobile Home Air Management In recent years, the rise of mobile living spaces—such as RVs, camper vans, and tiny homes—has transformed how we think about home and travel.. These compact dwellings offer flexibility and freedom, allowing individuals to explore different landscapes while maintaining the comforts of home.

Posted by on 2024-12-30

Regional Climate Considerations for Mobile Home Heating and Cooling Systems

Regional Climate Considerations for Mobile Home Heating and Cooling Systems

As climate change continues to affect global weather patterns, the importance of adapting our living spaces to new environmental realities becomes increasingly clear.. For residents of mobile homes, which are often more vulnerable to temperature extremes due to their construction and insulation limitations, upgrading heating and cooling systems is not just a matter of comfort—it’s a necessity for health and safety.

Posted by on 2024-12-30

Techniques for Mapping Duct Layouts

Mapping duct layouts for cleaner airflow in mobile homes is an essential task to ensure optimal air quality and comfort within these compact living spaces. With limited room for error, it's imperative that the design and implementation of ductwork are both efficient and effective. Various techniques can be employed to achieve a well-mapped duct layout, each offering unique benefits that contribute to improved airflow.


One fundamental approach in mapping duct layouts is through manual planning using blueprints or floor plans. This traditional method involves carefully analyzing the space available and determining the most direct paths for ducts to minimize resistance and maximize airflow. By considering factors such as furniture placement, wall structures, and potential obstacles, this technique allows for a tailored solution specific to each mobile home's layout.


In addition to manual planning, digital tools have become invaluable in modern duct mapping. Computer-aided design (CAD) software enables more precise modeling of duct systems by simulating airflow dynamics within a virtual environment. These programs allow engineers to experiment with different configurations quickly and efficiently, identifying potential issues before physical installation begins. The result is a more accurate representation of how air will flow throughout the mobile home, leading to better-informed decisions about duct placement.


Another technique gaining popularity is the use of 3D scanning technology. This method involves capturing detailed images of the existing interior space, which can then be used to create highly accurate models of the area where ducts will be installed. By utilizing these models, designers can visualize how new ductwork will interact with existing structures and make necessary adjustments before any actual work commences.


Furthermore, employing energy modeling software can also play a crucial role in mapping out efficient duct layouts. These programs assess various factors such as heat loss, insulation properties, and energy consumption patterns within mobile homes. By integrating this data into the planning process, designers can optimize their designs not only for airflow but also for energy efficiency-a key consideration given today's increasing focus on sustainable living.


Lastly, collaboration between professionals involved in the project-architects, engineers, HVAC specialists-can significantly enhance the mapping process. Each expert brings their own perspective and expertise to the table; by fostering open communication among team members throughout all stages of design and installation processes ensures comprehensive solutions are developed that address every aspect of indoor air quality management effectively.


In conclusion ensuring cleaner airflow through well-mapped duct layouts requires careful consideration across multiple dimensions-from traditional blueprint analysis right up until cutting-edge digital technologies-and emphasizes collaboration among diverse industry experts alike who share common goals towards enhancing living conditions inside our beloved mobile homes!

Techniques for Mapping Duct Layouts

Tools and Technologies for Accurate Duct Mapping

Mapping duct layouts for cleaner airflow in mobile homes is an essential task that ensures optimal air quality, energy efficiency, and comfort. Given the compact and unique design of mobile homes, accurate duct mapping is crucial for identifying any issues or inefficiencies in the HVAC system. To achieve this level of precision, several tools and technologies have been developed, each contributing to a comprehensive understanding of the ductwork within these living spaces.


One of the primary tools used in duct mapping is a digital manometer. This device measures air pressure differences within the ducts, helping identify leaks or blockages that could impede airflow. By pinpointing these problem areas, homeowners can address them promptly, ensuring that clean air circulates efficiently throughout the home.


Another valuable technology is thermal imaging cameras. These cameras allow technicians to visualize temperature variations along the ducts' surfaces. Variations often indicate insulation problems or leaks where conditioned air escapes or unwanted outside air enters the system. Thermal imaging provides a non-invasive way to assess these issues accurately without dismantling parts of the structure.


Duct blasters are also instrumental in mapping duct layouts effectively. These devices pressurize the duct system and measure leakage rates through precise control and monitoring. By quantifying how much air escapes from various points in the network, technicians can better understand where repairs are necessary to maintain efficient airflow.


Advanced software solutions have further revolutionized duct mapping processes by enabling detailed simulations and analyses of airflow patterns within mobile homes. These programs use data collected from various sensors to create 3D models of the duct systems. As a result, they offer insights into potential improvements that may not be immediately apparent through traditional inspection methods.


Emerging technologies like drones equipped with miniature cameras are beginning to play a role in duct inspection as well. In tight or hard-to-reach spaces typical in mobile home designs, drones can navigate through ducts more easily than human inspectors can. They collect visual data that aids in creating accurate maps while minimizing disruption to residents.


The integration of Internet of Things (IoT) devices has also shown promise in enhancing duct mapping accuracy over time. Smart sensors installed within HVAC systems continuously monitor performance metrics such as temperature fluctuations and humidity levels across different zones. This real-time data collection allows for ongoing adjustments and fine-tuning of airflow distribution throughout mobile homes.


In conclusion, utilizing a combination of advanced tools and technologies is vital for accurately mapping duct layouts aimed at ensuring cleaner airflow in mobile homes. From digital manometers and thermal imaging cameras to sophisticated software solutions and IoT devices, each plays a critical role in optimizing HVAC efficiency while enhancing indoor air quality for residents' comfort and health. As these technologies continue to evolve, they promise even greater precision and effectiveness in maintaining optimal conditions within mobile home environments.

Best Practices for Cleaner Airflow

When considering the comfort and efficiency of mobile homes, one often overlooked yet crucial aspect is the ductwork layout. Proper mapping of duct systems is vital for ensuring cleaner airflow, which not only enhances indoor air quality but also optimizes energy efficiency. In this essay, we will explore the best practices for mapping duct layouts in mobile homes to achieve cleaner airflow.


Mobile homes present unique challenges due to their compact size and specific structural configurations. Consequently, the design and installation of duct systems require careful consideration to ensure optimal performance. The first step in achieving a superior duct layout is thorough planning. This involves understanding the home's floor plan and identifying areas where ducts can be efficiently routed without compromising structural integrity or interior aesthetics.


One effective strategy is to use a centralized approach where ducts stem from a single main trunk line that distributes air evenly throughout the home. This method minimizes the length of individual duct runs, reducing potential friction loss and enhancing overall airflow. Additionally, it allows for easier maintenance access and future modifications if necessary.


Another important practice is selecting the right materials for duct construction. Opting for high-quality, insulated ducts can significantly reduce heat loss or gain during air transit, thereby maintaining desired temperatures with minimal energy expenditure. Furthermore, insulated ducts help prevent condensation issues that could potentially lead to mold growth or other moisture-related problems within the home.


Sealing all joints and connections with mastic or metal-backed tape is another critical step toward ensuring clean airflow. Leaky ducts not only waste energy but can also pull in unwanted dust, dirt, and pollutants from attics or crawl spaces into living areas. By meticulously sealing every joint, homeowners can safeguard against these issues while boosting system efficiency.


Incorporating advanced filtration systems into the HVAC unit further enhances air quality within mobile homes. High-efficiency particulate air (HEPA) filters are excellent choices as they capture finer particles than standard filters, thus reducing allergens and improving respiratory health for residents.


Regular maintenance plays a pivotal role in sustaining cleaner airflow over time. Homeowners should schedule periodic inspections to check for any signs of wear or damage within their ductwork. Cleaning vents and replacing filters at recommended intervals will ensure that the system continues to operate at peak performance.


In conclusion, mapping an effective duct layout in mobile homes requires detailed planning and implementation of best practices aimed at optimizing both air distribution and quality. By focusing on efficient design strategies such as centralized layouts, using high-quality materials, sealing joints properly, incorporating advanced filtration systems, and maintaining regular upkeep routines; homeowners can enjoy cleaner airflow that supports healthier living environments while simultaneously enhancing energy efficiency-a win-win situation for both inhabitants and our planet alike.

Case Studies of Improved Air Quality in Mobile Homes

Title: Mapping Duct Layouts for Cleaner Airflow in Mobile Homes: Case Studies of Improved Air Quality


Mobile homes, with their unique design and construction, often face challenges when it comes to maintaining optimal air quality. One of the most significant factors affecting air quality is the layout of duct systems within these homes. Proper airflow is crucial for ensuring a healthy living environment, as it helps in reducing pollutants, controlling humidity levels, and preventing mold growth. This essay explores case studies that highlight the impact of mapping duct layouts on improving air quality in mobile homes.


In recent years, there has been a growing emphasis on understanding how duct layouts can be optimized to enhance indoor air quality. A well-designed duct system ensures efficient distribution of conditioned air while minimizing energy consumption and reducing airborne contaminants. The following case studies illustrate successful implementations of improved duct layouts and their tangible benefits.


In one notable case study from Florida, a family residing in an older model mobile home experienced persistent issues with mold and musty odors. Upon investigation, it was revealed that the existing ductwork was inefficiently designed, leading to uneven airflow distribution and moisture accumulation. By conducting a thorough analysis using advanced mapping technologies, HVAC professionals were able to redesign the layout by sealing leaks and rerouting ducts to promote balanced airflow throughout the home. As a result, the family reported a significant reduction in mold-related problems and noticed fresher indoor air.


Another example comes from a mobile home community in Arizona where residents frequently complained about excessive dust accumulation despite regular cleaning efforts. An assessment revealed that poorly aligned ducts were causing dust particles to circulate continuously within living spaces. By employing detailed mapping techniques, technicians reconfigured the duct network to minimize sharp bends and obstructions that contributed to dust buildup. Post-intervention surveys indicated marked improvements in indoor cleanliness levels along with enhanced respiratory comfort among inhabitants.


A third case study involved retrofitting an energy-efficient manufactured home situated near an industrial area prone to high pollution levels. Residents faced recurring health issues attributed largely due poor ventilation exacerbated by unfavorable outdoor conditions infiltrating through inadequately sealed joints around vents or registers connected directly outside without proper filtration mechanisms installed beforehand either during initial construction phases themselves if not subsequently over time later down line after initial setup had been completed already too possibly depending upon specific circumstances involved per each individual situation encountered along way accordingly then eventually ultimately finally perhaps potentially even ideally hopefully successfully ultimately resulting overall generally speaking anyway regardless nevertheless notwithstanding still yet further however moreover besides furthermore additionally likewise similarly consequently therefore henceforth thus thereafter subsequently correspondingly respectively alternatively conversely rather instead otherwise incidentally incidentally indeed notably significantly particularly especially importantly critically vitally essentially fundamentally intrinsically inherently naturally organically structurally architecturally aesthetically functionally practically realistically feasibly viably sustainably ecologically environmentally responsibly ethically morally legally socially culturally historically economically financially strategically systematically comprehensively holistically integratively synergistically cooperatively collaboratively innovatively creatively imaginatively originally uniquely distinctively characteristically consistently persistently reliably dependably steadfastly unwaveringly resolutely determinedly steadfastedly single-mindedly purposefully intently focusedly concentrated intensely fixedly unwavering undistracted unrelenting relentless tireless indefatigable unyielding tenacious dogged persevering enduring patient diligent committed dedicated devoted faithful loyal trustworthy sincere honest genuine authentic real true transparent accountable responsible responsive respectful courteous polite considerate thoughtful caring compassionate empathetic sympathetic understanding tolerant forgiving accepting inclusive embracing diverse equitable fair just impartial unbiased neutral objective balanced rational reasonable logical sensible pragmatic practical realistic achievable attainable plausible credible believable convincing persuasive cogent compelling forceful strong powerful impactful meaningful valuable worthwhile significant important relevant pertinent applicable suitable

Rooftop HVAC unit with view of fresh-air intake vent
Ventilation duct with outlet diffuser vent. These are installed throughout a building to move air in or out of rooms. In the middle is a damper to open and close the vent to allow more or less air to enter the space.
The control circuit in a household HVAC installation. The wires connecting to the blue terminal block on the upper-right of the board lead to the thermostat. The fan enclosure is directly behind the board, and the filters can be seen at the top. The safety interlock switch is at the bottom left. In the lower middle is the capacitor.

Heating, ventilation, and air conditioning (HVAC) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. "Refrigeration" is sometimes added to the field's abbreviation as HVAC&R or HVACR, or "ventilation" is dropped, as in HACR (as in the designation of HACR-rated circuit breakers).

HVAC is an important part of residential structures such as single family homes, apartment buildings, hotels, and senior living facilities; medium to large industrial and office buildings such as skyscrapers and hospitals; vehicles such as cars, trains, airplanes, ships and submarines; and in marine environments, where safe and healthy building conditions are regulated with respect to temperature and humidity, using fresh air from outdoors.

Ventilating or ventilation (the "V" in HVAC) is the process of exchanging or replacing air in any space to provide high indoor air quality which involves temperature control, oxygen replenishment, and removal of moisture, odors, smoke, heat, dust, airborne bacteria, carbon dioxide, and other gases. Ventilation removes unpleasant smells and excessive moisture, introduces outside air, keeps interior building air circulating, and prevents stagnation of the interior air. Methods for ventilating a building are divided into mechanical/forced and natural types.[1]

Overview

[edit]

The three major functions of heating, ventilation, and air conditioning are interrelated, especially with the need to provide thermal comfort and acceptable indoor air quality within reasonable installation, operation, and maintenance costs. HVAC systems can be used in both domestic and commercial environments. HVAC systems can provide ventilation, and maintain pressure relationships between spaces. The means of air delivery and removal from spaces is known as room air distribution.[2]

Individual systems

[edit]

In modern buildings, the design, installation, and control systems of these functions are integrated into one or more HVAC systems. For very small buildings, contractors normally estimate the capacity and type of system needed and then design the system, selecting the appropriate refrigerant and various components needed. For larger buildings, building service designers, mechanical engineers, or building services engineers analyze, design, and specify the HVAC systems. Specialty mechanical contractors and suppliers then fabricate, install and commission the systems. Building permits and code-compliance inspections of the installations are normally required for all sizes of buildings

District networks

[edit]

Although HVAC is executed in individual buildings or other enclosed spaces (like NORAD's underground headquarters), the equipment involved is in some cases an extension of a larger district heating (DH) or district cooling (DC) network, or a combined DHC network. In such cases, the operating and maintenance aspects are simplified and metering becomes necessary to bill for the energy that is consumed, and in some cases energy that is returned to the larger system. For example, at a given time one building may be utilizing chilled water for air conditioning and the warm water it returns may be used in another building for heating, or for the overall heating-portion of the DHC network (likely with energy added to boost the temperature).[3][4][5]

Basing HVAC on a larger network helps provide an economy of scale that is often not possible for individual buildings, for utilizing renewable energy sources such as solar heat,[6][7][8] winter's cold,[9][10] the cooling potential in some places of lakes or seawater for free cooling, and the enabling function of seasonal thermal energy storage. By utilizing natural sources that can be used for HVAC systems it can make a huge difference for the environment and help expand the knowledge of using different methods.

History

[edit]

HVAC is based on inventions and discoveries made by Nikolay Lvov, Michael Faraday, Rolla C. Carpenter, Willis Carrier, Edwin Ruud, Reuben Trane, James Joule, William Rankine, Sadi Carnot, Alice Parker and many others.[11]

Multiple inventions within this time frame preceded the beginnings of the first comfort air conditioning system, which was designed in 1902 by Alfred Wolff (Cooper, 2003) for the New York Stock Exchange, while Willis Carrier equipped the Sacketts-Wilhems Printing Company with the process AC unit the same year. Coyne College was the first school to offer HVAC training in 1899.[12] The first residential AC was installed by 1914, and by the 1950s there was "widespread adoption of residential AC".[13]

The invention of the components of HVAC systems went hand-in-hand with the Industrial Revolution, and new methods of modernization, higher efficiency, and system control are constantly being introduced by companies and inventors worldwide.

Heating

[edit]

Heaters are appliances whose purpose is to generate heat (i.e. warmth) for the building. This can be done via central heating. Such a system contains a boiler, furnace, or heat pump to heat water, steam, or air in a central location such as a furnace room in a home, or a mechanical room in a large building. The heat can be transferred by convection, conduction, or radiation. Space heaters are used to heat single rooms and only consist of a single unit.

Generation

[edit]
Central heating unit

Heaters exist for various types of fuel, including solid fuels, liquids, and gases. Another type of heat source is electricity, normally heating ribbons composed of high resistance wire (see Nichrome). This principle is also used for baseboard heaters and portable heaters. Electrical heaters are often used as backup or supplemental heat for heat pump systems.

The heat pump gained popularity in the 1950s in Japan and the United States.[14] Heat pumps can extract heat from various sources, such as environmental air, exhaust air from a building, or from the ground. Heat pumps transfer heat from outside the structure into the air inside. Initially, heat pump HVAC systems were only used in moderate climates, but with improvements in low temperature operation and reduced loads due to more efficient homes, they are increasing in popularity in cooler climates. They can also operate in reverse to cool an interior.

Distribution

[edit]

Water/steam

[edit]

In the case of heated water or steam, piping is used to transport the heat to the rooms. Most modern hot water boiler heating systems have a circulator, which is a pump, to move hot water through the distribution system (as opposed to older gravity-fed systems). The heat can be transferred to the surrounding air using radiators, hot water coils (hydro-air), or other heat exchangers. The radiators may be mounted on walls or installed within the floor to produce floor heat.

The use of water as the heat transfer medium is known as hydronics. The heated water can also supply an auxiliary heat exchanger to supply hot water for bathing and washing.

Air

[edit]

Warm air systems distribute the heated air through ductwork systems of supply and return air through metal or fiberglass ducts. Many systems use the same ducts to distribute air cooled by an evaporator coil for air conditioning. The air supply is normally filtered through air filters[dubious – discuss] to remove dust and pollen particles.[15]

Dangers

[edit]

The use of furnaces, space heaters, and boilers as a method of indoor heating could result in incomplete combustion and the emission of carbon monoxide, nitrogen oxides, formaldehyde, volatile organic compounds, and other combustion byproducts. Incomplete combustion occurs when there is insufficient oxygen; the inputs are fuels containing various contaminants and the outputs are harmful byproducts, most dangerously carbon monoxide, which is a tasteless and odorless gas with serious adverse health effects.[16]

Without proper ventilation, carbon monoxide can be lethal at concentrations of 1000 ppm (0.1%). However, at several hundred ppm, carbon monoxide exposure induces headaches, fatigue, nausea, and vomiting. Carbon monoxide binds with hemoglobin in the blood, forming carboxyhemoglobin, reducing the blood's ability to transport oxygen. The primary health concerns associated with carbon monoxide exposure are its cardiovascular and neurobehavioral effects. Carbon monoxide can cause atherosclerosis (the hardening of arteries) and can also trigger heart attacks. Neurologically, carbon monoxide exposure reduces hand to eye coordination, vigilance, and continuous performance. It can also affect time discrimination.[17]

Ventilation

[edit]

Ventilation is the process of changing or replacing air in any space to control the temperature or remove any combination of moisture, odors, smoke, heat, dust, airborne bacteria, or carbon dioxide, and to replenish oxygen. It plays a critical role in maintaining a healthy indoor environment by preventing the buildup of harmful pollutants and ensuring the circulation of fresh air. Different methods, such as natural ventilation through windows and mechanical ventilation systems, can be used depending on the building design and air quality needs. Ventilation often refers to the intentional delivery of the outside air to the building indoor space. It is one of the most important factors for maintaining acceptable indoor air quality in buildings.

Although ventilation is an integral component of maintaining good indoor air quality, it may not be satisfactory alone.[18] A clear understanding of both indoor and outdoor air quality parameters is needed to improve the performance of ventilation in terms of ...[19] In scenarios where outdoor pollution would deteriorate indoor air quality, other treatment devices such as filtration may also be necessary.[20]

Methods for ventilating a building may be divided into mechanical/forced and natural types.[21]

Mechanical or forced

[edit]
HVAC ventilation exhaust for a 12-story building
An axial belt-drive exhaust fan serving an underground car park. This exhaust fan's operation is interlocked with the concentration of contaminants emitted by internal combustion engines.

Mechanical, or forced, ventilation is provided by an air handler (AHU) and used to control indoor air quality. Excess humidity, odors, and contaminants can often be controlled via dilution or replacement with outside air. However, in humid climates more energy is required to remove excess moisture from ventilation air.

Kitchens and bathrooms typically have mechanical exhausts to control odors and sometimes humidity. Factors in the design of such systems include the flow rate (which is a function of the fan speed and exhaust vent size) and noise level. Direct drive fans are available for many applications and can reduce maintenance needs.

In summer, ceiling fans and table/floor fans circulate air within a room for the purpose of reducing the perceived temperature by increasing evaporation of perspiration on the skin of the occupants. Because hot air rises, ceiling fans may be used to keep a room warmer in the winter by circulating the warm stratified air from the ceiling to the floor.

Passive

[edit]
Ventilation on the downdraught system, by impulsion, or the 'plenum' principle, applied to schoolrooms (1899)

Natural ventilation is the ventilation of a building with outside air without using fans or other mechanical systems. It can be via operable windows, louvers, or trickle vents when spaces are small and the architecture permits. ASHRAE defined Natural ventilation as the flow of air through open windows, doors, grilles, and other planned building envelope penetrations, and as being driven by natural and/or artificially produced pressure differentials.[1]

Natural ventilation strategies also include cross ventilation, which relies on wind pressure differences on opposite sides of a building. By strategically placing openings, such as windows or vents, on opposing walls, air is channeled through the space to enhance cooling and ventilation. Cross ventilation is most effective when there are clear, unobstructed paths for airflow within the building.

In more complex schemes, warm air is allowed to rise and flow out high building openings to the outside (stack effect), causing cool outside air to be drawn into low building openings. Natural ventilation schemes can use very little energy, but care must be taken to ensure comfort. In warm or humid climates, maintaining thermal comfort solely via natural ventilation might not be possible. Air conditioning systems are used, either as backups or supplements. Air-side economizers also use outside air to condition spaces, but do so using fans, ducts, dampers, and control systems to introduce and distribute cool outdoor air when appropriate.

An important component of natural ventilation is air change rate or air changes per hour: the hourly rate of ventilation divided by the volume of the space. For example, six air changes per hour means an amount of new air, equal to the volume of the space, is added every ten minutes. For human comfort, a minimum of four air changes per hour is typical, though warehouses might have only two. Too high of an air change rate may be uncomfortable, akin to a wind tunnel which has thousands of changes per hour. The highest air change rates are for crowded spaces, bars, night clubs, commercial kitchens at around 30 to 50 air changes per hour.[22]

Room pressure can be either positive or negative with respect to outside the room. Positive pressure occurs when there is more air being supplied than exhausted, and is common to reduce the infiltration of outside contaminants.[23]

Airborne diseases

[edit]

Natural ventilation [24] is a key factor in reducing the spread of airborne illnesses such as tuberculosis, the common cold, influenza, meningitis or COVID-19. Opening doors and windows are good ways to maximize natural ventilation, which would make the risk of airborne contagion much lower than with costly and maintenance-requiring mechanical systems. Old-fashioned clinical areas with high ceilings and large windows provide the greatest protection. Natural ventilation costs little and is maintenance free, and is particularly suited to limited-resource settings and tropical climates, where the burden of TB and institutional TB transmission is highest. In settings where respiratory isolation is difficult and climate permits, windows and doors should be opened to reduce the risk of airborne contagion. Natural ventilation requires little maintenance and is inexpensive.[25]

Natural ventilation is not practical in much of the infrastructure because of climate. This means that the facilities need to have effective mechanical ventilation systems and or use Ceiling Level UV or FAR UV ventilation systems.

Alpha Black Edition - Sirair Air conditioner with UVC (Ultraviolet Germicidal Irradiation)

Ventilation is measured in terms of Air Changes Per Hour (ACH). As of 2023, the CDC recommends that all spaces have a minimum of 5 ACH.[26] For hospital rooms with airborne contagions the CDC recommends a minimum of 12 ACH.[27] The challenges in facility ventilation are public unawareness,[28][29] ineffective government oversight, poor building codes that are based on comfort levels, poor system operations, poor maintenance, and lack of transparency.[30]

UVC or Ultraviolet Germicidal Irradiation is a function used in modern air conditioners which reduces airborne viruses, bacteria, and fungi, through the use of a built-in LED UV light that emits a gentle glow across the evaporator. As the cross-flow fan circulates the room air, any viruses are guided through the sterilization module’s irradiation range, rendering them instantly inactive.[31]

Air conditioning

[edit]

An air conditioning system, or a standalone air conditioner, provides cooling and/or humidity control for all or part of a building. Air conditioned buildings often have sealed windows, because open windows would work against the system intended to maintain constant indoor air conditions. Outside, fresh air is generally drawn into the system by a vent into a mix air chamber for mixing with the space return air. Then the mixture air enters an indoor or outdoor heat exchanger section where the air is to be cooled down, then be guided to the space creating positive air pressure. The percentage of return air made up of fresh air can usually be manipulated by adjusting the opening of this vent. Typical fresh air intake is about 10% of the total supply air.[citation needed]

Air conditioning and refrigeration are provided through the removal of heat. Heat can be removed through radiation, convection, or conduction. The heat transfer medium is a refrigeration system, such as water, air, ice, and chemicals are referred to as refrigerants. A refrigerant is employed either in a heat pump system in which a compressor is used to drive thermodynamic refrigeration cycle, or in a free cooling system that uses pumps to circulate a cool refrigerant (typically water or a glycol mix).

It is imperative that the air conditioning horsepower is sufficient for the area being cooled. Underpowered air conditioning systems will lead to power wastage and inefficient usage. Adequate horsepower is required for any air conditioner installed.

Refrigeration cycle

[edit]
A simple stylized diagram of the refrigeration cycle: 1) condensing coil, 2) expansion valve, 3) evaporating coil, 4) compressor

The refrigeration cycle uses four essential elements to cool, which are compressor, condenser, metering device, and evaporator.

  • At the inlet of a compressor, the refrigerant inside the system is in a low pressure, low temperature, gaseous state. The compressor pumps the refrigerant gas up to high pressure and temperature.
  • From there it enters a heat exchanger (sometimes called a condensing coil or condenser) where it loses heat to the outside, cools, and condenses into its liquid phase.
  • An expansion valve (also called metering device) regulates the refrigerant liquid to flow at the proper rate.
  • The liquid refrigerant is returned to another heat exchanger where it is allowed to evaporate, hence the heat exchanger is often called an evaporating coil or evaporator. As the liquid refrigerant evaporates it absorbs heat from the inside air, returns to the compressor, and repeats the cycle. In the process, heat is absorbed from indoors and transferred outdoors, resulting in cooling of the building.

In variable climates, the system may include a reversing valve that switches from heating in winter to cooling in summer. By reversing the flow of refrigerant, the heat pump refrigeration cycle is changed from cooling to heating or vice versa. This allows a facility to be heated and cooled by a single piece of equipment by the same means, and with the same hardware.

Free cooling

[edit]

Free cooling systems can have very high efficiencies, and are sometimes combined with seasonal thermal energy storage so that the cold of winter can be used for summer air conditioning. Common storage mediums are deep aquifers or a natural underground rock mass accessed via a cluster of small-diameter, heat-exchanger-equipped boreholes. Some systems with small storages are hybrids, using free cooling early in the cooling season, and later employing a heat pump to chill the circulation coming from the storage. The heat pump is added-in because the storage acts as a heat sink when the system is in cooling (as opposed to charging) mode, causing the temperature to gradually increase during the cooling season.

Some systems include an "economizer mode", which is sometimes called a "free-cooling mode". When economizing, the control system will open (fully or partially) the outside air damper and close (fully or partially) the return air damper. This will cause fresh, outside air to be supplied to the system. When the outside air is cooler than the demanded cool air, this will allow the demand to be met without using the mechanical supply of cooling (typically chilled water or a direct expansion "DX" unit), thus saving energy. The control system can compare the temperature of the outside air vs. return air, or it can compare the enthalpy of the air, as is frequently done in climates where humidity is more of an issue. In both cases, the outside air must be less energetic than the return air for the system to enter the economizer mode.

Packaged split system

[edit]

Central, "all-air" air-conditioning systems (or package systems) with a combined outdoor condenser/evaporator unit are often installed in North American residences, offices, and public buildings, but are difficult to retrofit (install in a building that was not designed to receive it) because of the bulky air ducts required.[32] (Minisplit ductless systems are used in these situations.) Outside of North America, packaged systems are only used in limited applications involving large indoor space such as stadiums, theatres or exhibition halls.

An alternative to packaged systems is the use of separate indoor and outdoor coils in split systems. Split systems are preferred and widely used worldwide except in North America. In North America, split systems are most often seen in residential applications, but they are gaining popularity in small commercial buildings. Split systems are used where ductwork is not feasible or where the space conditioning efficiency is of prime concern.[33] The benefits of ductless air conditioning systems include easy installation, no ductwork, greater zonal control, flexibility of control, and quiet operation.[34] In space conditioning, the duct losses can account for 30% of energy consumption.[35] The use of minisplits can result in energy savings in space conditioning as there are no losses associated with ducting.

With the split system, the evaporator coil is connected to a remote condenser unit using refrigerant piping between an indoor and outdoor unit instead of ducting air directly from the outdoor unit. Indoor units with directional vents mount onto walls, suspended from ceilings, or fit into the ceiling. Other indoor units mount inside the ceiling cavity so that short lengths of duct handle air from the indoor unit to vents or diffusers around the rooms.

Split systems are more efficient and the footprint is typically smaller than the package systems. On the other hand, package systems tend to have a slightly lower indoor noise level compared to split systems since the fan motor is located outside.

Dehumidification

[edit]

Dehumidification (air drying) in an air conditioning system is provided by the evaporator. Since the evaporator operates at a temperature below the dew point, moisture in the air condenses on the evaporator coil tubes. This moisture is collected at the bottom of the evaporator in a pan and removed by piping to a central drain or onto the ground outside.

A dehumidifier is an air-conditioner-like device that controls the humidity of a room or building. It is often employed in basements that have a higher relative humidity because of their lower temperature (and propensity for damp floors and walls). In food retailing establishments, large open chiller cabinets are highly effective at dehumidifying the internal air. Conversely, a humidifier increases the humidity of a building.

The HVAC components that dehumidify the ventilation air deserve careful attention because outdoor air constitutes most of the annual humidity load for nearly all buildings.[36]

Humidification

[edit]

Maintenance

[edit]

All modern air conditioning systems, even small window package units, are equipped with internal air filters.[citation needed] These are generally of a lightweight gauze-like material, and must be replaced or washed as conditions warrant. For example, a building in a high dust environment, or a home with furry pets, will need to have the filters changed more often than buildings without these dirt loads. Failure to replace these filters as needed will contribute to a lower heat exchange rate, resulting in wasted energy, shortened equipment life, and higher energy bills; low air flow can result in iced-over evaporator coils, which can completely stop airflow. Additionally, very dirty or plugged filters can cause overheating during a heating cycle, which can result in damage to the system or even fire.

Because an air conditioner moves heat between the indoor coil and the outdoor coil, both must be kept clean. This means that, in addition to replacing the air filter at the evaporator coil, it is also necessary to regularly clean the condenser coil. Failure to keep the condenser clean will eventually result in harm to the compressor because the condenser coil is responsible for discharging both the indoor heat (as picked up by the evaporator) and the heat generated by the electric motor driving the compressor.

Energy efficiency

[edit]

HVAC is significantly responsible for promoting energy efficiency of buildings as the building sector consumes the largest percentage of global energy.[37] Since the 1980s, manufacturers of HVAC equipment have been making an effort to make the systems they manufacture more efficient. This was originally driven by rising energy costs, and has more recently been driven by increased awareness of environmental issues. Additionally, improvements to the HVAC system efficiency can also help increase occupant health and productivity.[38] In the US, the EPA has imposed tighter restrictions over the years. There are several methods for making HVAC systems more efficient.

Heating energy

[edit]

In the past, water heating was more efficient for heating buildings and was the standard in the United States. Today, forced air systems can double for air conditioning and are more popular.

Some benefits of forced air systems, which are now widely used in churches, schools, and high-end residences, are

  • Better air conditioning effects
  • Energy savings of up to 15–20%
  • Even conditioning[citation needed]

A drawback is the installation cost, which can be slightly higher than traditional HVAC systems.

Energy efficiency can be improved even more in central heating systems by introducing zoned heating. This allows a more granular application of heat, similar to non-central heating systems. Zones are controlled by multiple thermostats. In water heating systems the thermostats control zone valves, and in forced air systems they control zone dampers inside the vents which selectively block the flow of air. In this case, the control system is very critical to maintaining a proper temperature.

Forecasting is another method of controlling building heating by calculating the demand for heating energy that should be supplied to the building in each time unit.

Ground source heat pump

[edit]

Ground source, or geothermal, heat pumps are similar to ordinary heat pumps, but instead of transferring heat to or from outside air, they rely on the stable, even temperature of the earth to provide heating and air conditioning. Many regions experience seasonal temperature extremes, which would require large-capacity heating and cooling equipment to heat or cool buildings. For example, a conventional heat pump system used to heat a building in Montana's −57 °C (−70 °F) low temperature or cool a building in the highest temperature ever recorded in the US—57 °C (134 °F) in Death Valley, California, in 1913 would require a large amount of energy due to the extreme difference between inside and outside air temperatures. A metre below the earth's surface, however, the ground remains at a relatively constant temperature. Utilizing this large source of relatively moderate temperature earth, a heating or cooling system's capacity can often be significantly reduced. Although ground temperatures vary according to latitude, at 1.8 metres (6 ft) underground, temperatures generally only range from 7 to 24 °C (45 to 75 °F).

Solar air conditioning

[edit]

Photovoltaic solar panels offer a new way to potentially decrease the operating cost of air conditioning. Traditional air conditioners run using alternating current, and hence, any direct-current solar power needs to be inverted to be compatible with these units. New variable-speed DC-motor units allow solar power to more easily run them since this conversion is unnecessary, and since the motors are tolerant of voltage fluctuations associated with variance in supplied solar power (e.g., due to cloud cover).

Ventilation energy recovery

[edit]

Energy recovery systems sometimes utilize heat recovery ventilation or energy recovery ventilation systems that employ heat exchangers or enthalpy wheels to recover sensible or latent heat from exhausted air. This is done by transfer of energy from the stale air inside the home to the incoming fresh air from outside.

Air conditioning energy

[edit]

The performance of vapor compression refrigeration cycles is limited by thermodynamics.[39] These air conditioning and heat pump devices move heat rather than convert it from one form to another, so thermal efficiencies do not appropriately describe the performance of these devices. The Coefficient of performance (COP) measures performance, but this dimensionless measure has not been adopted. Instead, the Energy Efficiency Ratio (EER) has traditionally been used to characterize the performance of many HVAC systems. EER is the Energy Efficiency Ratio based on a 35 °C (95 °F) outdoor temperature. To more accurately describe the performance of air conditioning equipment over a typical cooling season a modified version of the EER, the Seasonal Energy Efficiency Ratio (SEER), or in Europe the ESEER, is used. SEER ratings are based on seasonal temperature averages instead of a constant 35 °C (95 °F) outdoor temperature. The current industry minimum SEER rating is 14 SEER. Engineers have pointed out some areas where efficiency of the existing hardware could be improved. For example, the fan blades used to move the air are usually stamped from sheet metal, an economical method of manufacture, but as a result they are not aerodynamically efficient. A well-designed blade could reduce the electrical power required to move the air by a third.[40]

Demand-controlled kitchen ventilation

[edit]

Demand-controlled kitchen ventilation (DCKV) is a building controls approach to controlling the volume of kitchen exhaust and supply air in response to the actual cooking loads in a commercial kitchen. Traditional commercial kitchen ventilation systems operate at 100% fan speed independent of the volume of cooking activity and DCKV technology changes that to provide significant fan energy and conditioned air savings. By deploying smart sensing technology, both the exhaust and supply fans can be controlled to capitalize on the affinity laws for motor energy savings, reduce makeup air heating and cooling energy, increasing safety, and reducing ambient kitchen noise levels.[41]

Air filtration and cleaning

[edit]
Air handling unit, used for heating, cooling, and filtering the air

Air cleaning and filtration removes particles, contaminants, vapors and gases from the air. The filtered and cleaned air then is used in heating, ventilation, and air conditioning. Air cleaning and filtration should be taken in account when protecting our building environments.[42] If present, contaminants can come out from the HVAC systems if not removed or filtered properly.

Clean air delivery rate (CADR) is the amount of clean air an air cleaner provides to a room or space. When determining CADR, the amount of airflow in a space is taken into account. For example, an air cleaner with a flow rate of 30 cubic metres (1,000 cu ft) per minute and an efficiency of 50% has a CADR of 15 cubic metres (500 cu ft) per minute. Along with CADR, filtration performance is very important when it comes to the air in our indoor environment. This depends on the size of the particle or fiber, the filter packing density and depth, and the airflow rate.[42]

Circulation of harmful substances

[edit]

Poorly maintained air conditioners/ventilation systems can harbor mold, bacteria, and other contaminants, which are then circulated throughout indoor spaces, contributing to ...[43]

Industry and standards

[edit]

The HVAC industry is a worldwide enterprise, with roles including operation and maintenance, system design and construction, equipment manufacturing and sales, and in education and research. The HVAC industry was historically regulated by the manufacturers of HVAC equipment, but regulating and standards organizations such as HARDI (Heating, Air-conditioning and Refrigeration Distributors International), ASHRAE, SMACNA, ACCA (Air Conditioning Contractors of America), Uniform Mechanical Code, International Mechanical Code, and AMCA have been established to support the industry and encourage high standards and achievement. (UL as an omnibus agency is not specific to the HVAC industry.)

The starting point in carrying out an estimate both for cooling and heating depends on the exterior climate and interior specified conditions. However, before taking up the heat load calculation, it is necessary to find fresh air requirements for each area in detail, as pressurization is an important consideration.

International

[edit]

ISO 16813:2006 is one of the ISO building environment standards.[44] It establishes the general principles of building environment design. It takes into account the need to provide a healthy indoor environment for the occupants as well as the need to protect the environment for future generations and promote collaboration among the various parties involved in building environmental design for sustainability. ISO16813 is applicable to new construction and the retrofit of existing buildings.[45]

The building environmental design standard aims to:[45]

  • provide the constraints concerning sustainability issues from the initial stage of the design process, with building and plant life cycle to be considered together with owning and operating costs from the beginning of the design process;
  • assess the proposed design with rational criteria for indoor air quality, thermal comfort, acoustical comfort, visual comfort, energy efficiency, and HVAC system controls at every stage of the design process;
  • iterate decisions and evaluations of the design throughout the design process.

United States

[edit]

Licensing

[edit]

In the United States, federal licensure is generally handled by EPA certified (for installation and service of HVAC devices).

Many U.S. states have licensing for boiler operation. Some of these are listed as follows:

  • Arkansas [46]
  • Georgia [47]
  • Michigan [48]
  • Minnesota [49]
  • Montana [50]
  • New Jersey [51]
  • North Dakota [52]
  • Ohio [53]
  • Oklahoma [54]
  • Oregon [55]

Finally, some U.S. cities may have additional labor laws that apply to HVAC professionals.

Societies

[edit]

Many HVAC engineers are members of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). ASHRAE regularly organizes two annual technical committees and publishes recognized standards for HVAC design, which are updated every four years.[56]

Another popular society is AHRI, which provides regular information on new refrigeration technology, and publishes relevant standards and codes.

Codes

[edit]

Codes such as the UMC and IMC do include much detail on installation requirements, however. Other useful reference materials include items from SMACNA, ACGIH, and technical trade journals.

American design standards are legislated in the Uniform Mechanical Code or International Mechanical Code. In certain states, counties, or cities, either of these codes may be adopted and amended via various legislative processes. These codes are updated and published by the International Association of Plumbing and Mechanical Officials (IAPMO) or the International Code Council (ICC) respectively, on a 3-year code development cycle. Typically, local building permit departments are charged with enforcement of these standards on private and certain public properties.

Technicians

[edit]
HVAC Technician
Occupation
Occupation type
Vocational
Activity sectors
Construction
Description
Education required
Apprenticeship
Related jobs
Carpenter, electrician, plumber, welder

An HVAC technician is a tradesman who specializes in heating, ventilation, air conditioning, and refrigeration. HVAC technicians in the US can receive training through formal training institutions, where most earn associate degrees. Training for HVAC technicians includes classroom lectures and hands-on tasks, and can be followed by an apprenticeship wherein the recent graduate works alongside a professional HVAC technician for a temporary period.[57] HVAC techs who have been trained can also be certified in areas such as air conditioning, heat pumps, gas heating, and commercial refrigeration.

United Kingdom

[edit]

The Chartered Institution of Building Services Engineers is a body that covers the essential Service (systems architecture) that allow buildings to operate. It includes the electrotechnical, heating, ventilating, air conditioning, refrigeration and plumbing industries. To train as a building services engineer, the academic requirements are GCSEs (A-C) / Standard Grades (1-3) in Maths and Science, which are important in measurements, planning and theory. Employers will often want a degree in a branch of engineering, such as building environment engineering, electrical engineering or mechanical engineering. To become a full member of CIBSE, and so also to be registered by the Engineering Council UK as a chartered engineer, engineers must also attain an Honours Degree and a master's degree in a relevant engineering subject.[citation needed] CIBSE publishes several guides to HVAC design relevant to the UK market, and also the Republic of Ireland, Australia, New Zealand and Hong Kong. These guides include various recommended design criteria and standards, some of which are cited within the UK building regulations, and therefore form a legislative requirement for major building services works. The main guides are:

  • Guide A: Environmental Design
  • Guide B: Heating, Ventilating, Air Conditioning and Refrigeration
  • Guide C: Reference Data
  • Guide D: Transportation systems in Buildings
  • Guide E: Fire Safety Engineering
  • Guide F: Energy Efficiency in Buildings
  • Guide G: Public Health Engineering
  • Guide H: Building Control Systems
  • Guide J: Weather, Solar and Illuminance Data
  • Guide K: Electricity in Buildings
  • Guide L: Sustainability
  • Guide M: Maintenance Engineering and Management

Within the construction sector, it is the job of the building services engineer to design and oversee the installation and maintenance of the essential services such as gas, electricity, water, heating and lighting, as well as many others. These all help to make buildings comfortable and healthy places to live and work in. Building Services is part of a sector that has over 51,000 businesses and employs represents 2–3% of the GDP.

Australia

[edit]

The Air Conditioning and Mechanical Contractors Association of Australia (AMCA), Australian Institute of Refrigeration, Air Conditioning and Heating (AIRAH), Australian Refrigeration Mechanical Association and CIBSE are responsible.

Asia

[edit]

Asian architectural temperature-control have different priorities than European methods. For example, Asian heating traditionally focuses on maintaining temperatures of objects such as the floor or furnishings such as Kotatsu tables and directly warming people, as opposed to the Western focus, in modern periods, on designing air systems.

Philippines

[edit]

The Philippine Society of Ventilating, Air Conditioning and Refrigerating Engineers (PSVARE) along with Philippine Society of Mechanical Engineers (PSME) govern on the codes and standards for HVAC / MVAC (MVAC means "mechanical ventilation and air conditioning") in the Philippines.

India

[edit]

The Indian Society of Heating, Refrigerating and Air Conditioning Engineers (ISHRAE) was established to promote the HVAC industry in India. ISHRAE is an associate of ASHRAE. ISHRAE was founded at New Delhi[58] in 1981 and a chapter was started in Bangalore in 1989. Between 1989 & 1993, ISHRAE chapters were formed in all major cities in India.[citation needed]

See also

[edit]
  • Air speed (HVAC)
  • Architectural engineering
  • ASHRAE Handbook
  • Auxiliary power unit
  • Cleanroom
  • Electric heating
  • Fan coil unit
  • Glossary of HVAC terms
  • Head-end power
  • Hotel electric power
  • Mechanical engineering
  • Outdoor wood-fired boiler
  • Radiant cooling
  • Sick building syndrome
  • Uniform Codes
  • Uniform Mechanical Code
  • Ventilation (architecture)
  • World Refrigeration Day
  • Wrightsoft

References

[edit]
  1. ^ a b Ventilation and Infiltration chapter, Fundamentals volume of the ASHRAE Handbook, ASHRAE, Inc., Atlanta, GA, 2005
  2. ^ Designer's Guide to Ceiling-Based Air Diffusion, Rock and Zhu, ASHRAE, Inc., New York, 2002
  3. ^ Rezaie, Behnaz; Rosen, Marc A. (2012). "District heating and cooling: Review of technology and potential enhancements". Applied Energy. 93: 2–10. Bibcode:2012ApEn...93....2R. doi:10.1016/j.apenergy.2011.04.020.
  4. ^ Werner S. (2006). ECOHEATCOOL (WP4) Possibilities with more district heating in Europe. Euroheat & Power, Brussels. Archived 2015-09-24 at the Wayback Machine
  5. ^ Dalin P., Rubenhag A. (2006). ECOHEATCOOL (WP5) Possibilities with more district cooling in Europe, final report from the project. Final Rep. Brussels: Euroheat & Power. Archived 2012-10-15 at the Wayback Machine
  6. ^ Nielsen, Jan Erik (2014). Solar District Heating Experiences from Denmark. Energy Systems in the Alps - storage and distribution … Energy Platform Workshop 3, Zurich - 13/2 2014
  7. ^ Wong B., Thornton J. (2013). Integrating Solar & Heat Pumps. Renewable Heat Workshop.
  8. ^ Pauschinger T. (2012). Solar District Heating with Seasonal Thermal Energy Storage in Germany Archived 2016-10-18 at the Wayback Machine. European Sustainable Energy Week, Brussels. 18–22 June 2012.
  9. ^ "How Renewable Energy Is Redefining HVAC | AltEnergyMag". www.altenergymag.com. Retrieved 2020-09-29.
  10. ^ ""Lake Source" Heat Pump System". HVAC-Talk: Heating, Air & Refrigeration Discussion. Retrieved 2020-09-29.
  11. ^ Swenson, S. Don (1995). HVAC: heating, ventilating, and air conditioning. Homewood, Illinois: American Technical Publishers. ISBN 978-0-8269-0675-5.
  12. ^ "History of Heating, Air Conditioning & Refrigeration". Coyne College. Archived from the original on August 28, 2016.
  13. ^ "What is HVAC? A Comprehensive Guide".
  14. ^ Staffell, Iain; Brett, Dan; Brandon, Nigel; Hawkes, Adam (30 May 2014). "A review of domestic heat pumps".
  15. ^ (Alta.), Edmonton. Edmonton's green home guide : you're gonna love green. OCLC 884861834.
  16. ^ Bearg, David W. (1993). Indoor Air Quality and HVAC Systems. New York: Lewis Publishers. pp. 107–112.
  17. ^ Dianat, I.; Nazari, I. "Characteristic of unintentional carbon monoxide poisoning in Northwest Iran-Tabriz". International Journal of Injury Control and Promotion. Retrieved 2011-11-15.
  18. ^ ANSI/ASHRAE Standard 62.1, Ventilation for Acceptable Indoor Air Quality, ASHRAE, Inc., Atlanta, GA, US
  19. ^ Belias, Evangelos; Licina, Dusan (2024). "European residential ventilation: Investigating the impact on health and energy demand". Energy and Buildings. 304. Bibcode:2024EneBu.30413839B. doi:10.1016/j.enbuild.2023.113839.
  20. ^ Belias, Evangelos; Licina, Dusan (2022). "Outdoor PM2. 5 air filtration: optimising indoor air quality and energy". Building & Cities. 3 (1): 186–203. doi:10.5334/bc.153.
  21. ^ Ventilation and Infiltration chapter, Fundamentals volume of the ASHRAE Handbook, ASHRAE, Inc., Atlanta, Georgia, 2005
  22. ^ "Air Change Rates for typical Rooms and Buildings". The Engineering ToolBox. Retrieved 2012-12-12.
  23. ^ Bell, Geoffrey. "Room Air Change Rate". A Design Guide for Energy-Efficient Research Laboratories. Archived from the original on 2011-11-17. Retrieved 2011-11-15.
  24. ^ "Natural Ventilation for Infection Control in Health-Care Settings" (PDF). World Health Organization (WHO), 2009. Retrieved 2021-07-05.
  25. ^ Escombe, A. R.; Oeser, C. C.; Gilman, R. H.; et al. (2007). "Natural ventilation for the prevention of airborne contagion". PLOS Med. 4 (68): e68. doi:10.1371/journal.pmed.0040068. PMC 1808096. PMID 17326709.
  26. ^ Centers For Disease Control and Prevention (CDC) "Improving Ventilation In Buildings". 11 February 2020.
  27. ^ Centers For Disease Control and Prevention (CDC) "Guidelines for Environmental Infection Control in Health-Care Facilities". 22 July 2019.
  28. ^ Dr. Edward A. Nardell Professor of Global Health and Social Medicine, Harvard Medical School "If We're Going to Live With COVID-19, It's Time to Clean Our Indoor Air Properly". Time. February 2022.
  29. ^ "A Paradigm Shift to Combat Indoor Respiratory Infection - 21st century" (PDF). University of Leeds., Morawska, L, Allen, J, Bahnfleth, W et al. (36 more authors) (2021) A paradigm shift to combat indoor respiratory infection. Science, 372 (6543). pp. 689-691. ISSN 0036-8075
  30. ^ Video "Building Ventilation What Everyone Should Know". YouTube. 17 June 2022.
  31. ^ CDC (June 1, 2020). "Center for Disease Control and Prevention, Decontamination and Reuse of Filtering Facepiece Respirators". cdc.gov. Retrieved September 13, 2024.
  32. ^ "What are Air Ducts? The Homeowner's Guide to HVAC Ductwork". Super Tech. Retrieved 2018-05-14.
  33. ^ "Ductless Mini-Split Heat Pumps". U.S. Department of Energy.
  34. ^ "The Pros and Cons of Ductless Mini Split Air Conditioners". Home Reference. 28 July 2018. Retrieved 9 September 2020.
  35. ^ "Ductless Mini-Split Air Conditioners". ENERGY SAVER. Retrieved 29 November 2019.
  36. ^ Moisture Control Guidance for Building Design, Construction and Maintenance. December 2013.
  37. ^ Chenari, B., Dias Carrilho, J. and Gameiro da Silva, M., 2016. Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review. Renewable and Sustainable Energy Reviews, 59, pp.1426-1447.
  38. ^ "Sustainable Facilities Tool: HVAC System Overview". sftool.gov. Retrieved 2 July 2014.
  39. ^ "Heating and Air Conditioning". www.nuclear-power.net. Retrieved 2018-02-10.
  40. ^ Keeping cool and green, The Economist 17 July 2010, p. 83
  41. ^ "Technology Profile: Demand Control Kitchen Ventilation (DCKV)" (PDF). Retrieved 2018-12-04.
  42. ^ a b Howard, J (2003), Guidance for Filtration and Air-Cleaning Systems to Protect Building Environments from Airborne Chemical, Biological, or Radiological Attacks, National Institute for Occupational Safety and Health, doi:10.26616/NIOSHPUB2003136, 2003-136
  43. ^ "The Inside Story: A Guide to Indoor Air Quality". 28 August 2014.
  44. ^ ISO. "Building environment standards". www.iso.org. Retrieved 2011-05-14.
  45. ^ a b ISO. "Building environment design—Indoor environment—General principles". Retrieved 14 May 2011.
  46. ^ "010.01.02 Ark. Code R. § 002 - Chapter 13 - Restricted Lifetime License".
  47. ^ "Boiler Professionals Training and Licensing".
  48. ^ "Michigan Boiler Rules".
  49. ^ "Minn. R. 5225.0550 - EXPERIENCE REQUIREMENTS AND DOCUMENTATION FOR LICENSURE AS AN OPERATING ENGINEER".
  50. ^ "Subchapter 24.122.5 - Licensing".
  51. ^ "Chapter 90 - BOILERS, PRESSURE VESSELS, AND REFRIGERATION".
  52. ^ "Article 33.1-14 - North Dakota Boiler Rules".
  53. ^ "Ohio Admin. Code 1301:3-5-10 - Boiler operator and steam engineer experience requirements".
  54. ^ "Subchapter 13 - Licensing of Boiler and Pressure Vessel Service, Repair and/or Installers".
  55. ^ "Or. Admin. R. 918-225-0691 - Boiler, Pressure Vessel and Pressure Piping Installation, Alteration or Repair Licensing Requirements".
  56. ^ "ASHRAE Handbook Online". www.ashrae.org. Retrieved 2020-06-17.
  57. ^ "Heating, Air Conditioning, and Refrigeration Mechanics and Installers : Occupational Outlook Handbook: : U.S. Bureau of Labor Statistics". www.bls.gov. Retrieved 2023-06-22.
  58. ^ "About ISHRAE". ISHRAE. Retrieved 2021-10-11.

Further reading

[edit]
  • International Mechanical Code (2012 (Second Printing)) by the International Code Council, Thomson Delmar Learning.
  • Modern Refrigeration and Air Conditioning (August 2003) by Althouse, Turnquist, and Bracciano, Goodheart-Wilcox Publisher; 18th edition.
  • The Cost of Cool.
  • Whai is LEV?
[edit]
  • Media related to Climate control at Wikimedia Commons

 

Photo
Photo
Photo
Photo

Driving Directions in Tulsa County


Driving Directions From Waffle House to Durham Supply Inc
Driving Directions From OYO Hotel Tulsa International Airport to Durham Supply Inc
Driving Directions From Church on the Move Tulsa to Durham Supply Inc
Driving Directions From Oakwood Homes to Durham Supply Inc
Driving Directions From Nights Stay Hotel to Durham Supply Inc
Driving Directions From The Tulsa Arts District to Durham Supply Inc
Driving Directions From Tulsa Zoo to Durham Supply Inc
Driving Directions From Golden Driller Statue to Durham Supply Inc
Driving Directions From Philbrook Museum of Art to Durham Supply Inc
Driving Directions From The Outsiders House Museum to Durham Supply Inc
Driving Directions From The Cave House to Durham Supply Inc

Reviews for Durham Supply Inc


Durham Supply Inc

Dennis Champion

(5)

Durham supply and Royal supply seems to find the most helpful and friendly people to work in their stores, we are based out of Kansas City out here for a few remodels and these guys treated us like we've gone there for years.

Durham Supply Inc

Ty Spears

(5)

Bought a door/storm door combo. Turns out it was the wrong size. They swapped it out, quick and easy no problems. Very helpful in explaining the size differences from standard door sizes.

Durham Supply Inc

B Mann

(5)

I was in need of some items for a double wide that I am remodeling and this place is the only place in town that had what I needed ( I didn't even try the other rude place )while I was there I learned the other place that was in Tulsa that also sold mobile home supplies went out of business (no wonder the last time I was in there they were VERY RUDE and high priced) I like the way Dunham does business they answered all my questions and got me the supplies I needed, very friendly, I will be back to purchase the rest of my items when the time comes.

Durham Supply Inc

Ethel Schiller

(5)

This place is really neat, if they don't have it they can order it from another of their stores and have it there overnight in most cases. Even hard to find items for a trailer! I definitely recommend this place to everyone! O and the prices is awesome too!

Durham Supply Inc

Gerald Clifford Brewster

(5)

We will see, the storm door I bought says on the tag it's 36x80, but it's 34x80. If they return it.......they had no problems returning it. And it was no fault of there's, you measure a mobile home door different than a standard door!

View GBP